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ABSTRACT

We show how an initially linear spanwise disturbance of the free-stream

velocity field is amplified by leading edge bluntness effects and ultimately
leads to a small amplitude but nonlinear spanwise motion far downstream from
the edge. This spanwise motion is imposed on the boundary layer flow and
ultimately causes an order-one change in its profile shape. The modified
profiles are highly unstable and can support Tollmein-Schlichting wave growth
well upstream of the theoretical lower branch of the neutral stability curve

for a Blasius boundary layer.

I. INTRODUCTION

Efforts to understand boundary layer transition have been underway for a

number of years now. The relevant experimental measurements are usually made

on the boundary layer flows over relatively thin flat plates embedded in nomi-

nally uniform free streams. The final turbulent state arises from the rela-

tively slow streamwise growth of initially linear instability waves that gradu-

ally evolve from the small amplitude unsteadiness that either occurs naturally

in the experiments or can be artificially imposed by the experimenter in order

to organize the motion.

An important unresolved issue involves the observed instability wave
growth that occurs upstream of the theoretical (i.e., two-dimensional flat
plate) lower branch of the neutral stability curve in some experiments. One
purpose of the present paper is to provide a possible explanation of this phe-
nomena. We show that small but steady variations in the upstream velocity



field can produce somewhat larger streamwise vorticity fields within the bound-
ary layer which can, in turn, produce significant (i.e., order-one) variations
in the streamwise boundary layer profiles. These profiles turn out to be non-
inflectional and therefore incapable of supporting rapidly growing inviscid
instabilities with growth rates that scale with the inverse boundary layer
thickness. However, the local wall shear becomes small at certain spanwise
locations which tends to move the lower branch of the Tollmein-gchlichting wave

neutral stability curve upstream of its theoretical flat plate location. The
streamwise vorticity field can also amplify the Tollmein-gchlichting waves
through the resonant mechanism suggested by Nayfeh (1981). The resulting
three-dimensional disturbances would then grow on the inverse spanwise length
scale of the disturbance which could (numerically if not asymptotically) be

equal to the Tollmein-gchlichting wave growth rates.

Goldstein (1983) and Goldstein et al. (1983) showed that long wavelength
free-stream disturbances can interact with the rapidly developing leading edge

boundary layer to generate spatially decaying asymptotic eigenmodes that even-
tually turn into spatially amplified Tollmein-Schlichting waves once they reach
the lower branch of the neutral stability curve. The present analysis shows
that small nonuniformities in the oncoming stream can cause the relevant branch
to move well upstream of its theoretical Blasius location.

Crow (1966) also considered the steady distortion of flat-plate boundary
layer flows by free stream nonuniformities, but that work is quite different
from ours. One important difference is that the present work is concerned with
the augmentation of instability wave growth while Crow is concerned with the
development of three dimensionality. Our emphasis is therefore on the linear
and nonlinear amplification mechanisms that ultimately produce order-one
changes in the boundary layer flow, while the boundary layer flow is linearized
about the Blasius flow in the Crow analysis. In this regard, it is worth not-

ing that leading-edge bluntness effects play a central role in the present
work, while Crow considers only an infinitely thin flat plate. Another impor-
tant difference is that the present work qualitatively predicts the destabili-

zation of the boundary layer flow, while Crow's analysis, which is only con-
cerned with the three dimensionality, does not.

We assume that the dimensions of the 'leading edge ellipse' are of the
order of the spanwise length scale, say k, of the upstream disturbance field

and that the Reynolds number based on k, say R_, is large. Then the upstream
distortion interacts linearly with the leading edge with the resulting flow

being well described by the usual 'rapid distortion' theory (Hunt and
Carruthers, 1990, and Goldstein, 1978). The relevant analysis was, at least in

principle, given by Lighthill (1956) who showed that the upstream distortion
produces a cross flow velocity field that becomes logarithmically infinite at
the surface of the plate. The logarithmic singularity must ultimately be
removed by viscous effects, which (as in Toomre, 1960) are confined to the vis-
cous boundary layer region (with the Reynolds number - amplitude scaling being
considered herein). Our analysis shows that the inviscid cross flow effects
produce only a linear perturbation of the boundary layer flow in the vicinity
of the leading edge, where the undisturbed boundary layer undergoes its most

rapid streamwise development, but that they produce an order-one change in the
mean boundary layer profiles at large distances downstream where its streamwise
development is on a considerably slower scale.
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However, the linear rapid distortion theory solution, which provides an
adequate description of the external inviscid flow in the vicinity of the lead-

ing edge, begins to break down at large streamwise distances with the breakdown
moving further upstream as the surface of the plate is approached, h new non-
linear solution then has to be obtained in order to describe the inviscid flow

outside the boundary layer in the physically interesting region where cross
flow effects produce a significant (i.e., order-one) profile change. The
thickness of this nonlinear inviscid region is small compared to its streamwise
dimension but large compared to the boundary layer thickness. It serves as a
kind of 'blending layer' that connects the boundary layer solution to the lin-
ear rapid distortion theory solution, which applies at an order-one (on the

scale of k) distance from the wall.

The blending layer flow is governed by the nonlinear 'water wave' equation
whose solution eventually develops a singularity at a certain spanwise location
and at a finite downstream position due to the well-known wave steeping effects
associated with that solution. This also produces a singularity (signified by

the vanishing of the wall shear) in the boundary layer flow at the same (span-
wise and streamwise) location. The boundary layer therefore, develops local-
ized regions of relatively small spanwise extent in which the flow is destabi-
lized as a result of large reductions in the wall shear.

New local solutions to the blending and boundary layer problem have to be
worked out in order to understand the structure of these regions. The two
solutions must then be matched in an appropriate overlap domain. The boundary

layer solution actually develops a double layer structure as it approaches the
singularity so that the overall asymptotic structure has three layers in the
vicinity of the singularity. A second purpose of this paper is to investigate
the relevant structure of this local solution.

The overall plan of the paper is as follows. Section 2.1 describes the
linear inviscid flow produced by the steady upstream distortion field and the
initial breakdown of the relevant linear 'rapid distortion' theory solution is
discussed in section 2.2. The appropriate nonlinear, but inviscid, solution
that eliminates the breakdown is described in section 3. In section 4 we show
that this solution develops a singularity somewhat further downstream and that
this singularity can, in turn, be eliminated by a new local solution to the

problem.

The viscous boundary layer problem is formulated in section 5. The solu-
tion to this problem develops a singularity at the position of the inviscid
singularity and the terminal form of the boundary layer solution is worked out
in section 5.2. This local similarity solution has a double layer structure
with an outer inviscid region and a viscous wall layer. A new expansion which
continues the boundary layer solution through the singularity is worked out in
sections 5.3 and 5.4. This solution has the same streamwise length scale as
the external solution and it is shown that the two solutions can be matched in

an appropriate overlap domain.

The numerical solutions to the boundary layer problem are described in
section 6. They show that it exhibits a rapid thickening in the vicinity of

the singularity, which might be characterized as a kind of "bursting" of the
boundary layer - a phenomena which has, up to now, been found only in unsteady
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flows. This might lead to a local transition of the boundary layer and there-
fore provide a possible mechanism for by-pass transition. These and other
issues are discussed in section 7.

2. FORMULATION AND BREAKDOWN OF LINEAR SOLUTION

We are concerned With the flow over a semi-infinite flat plate of finite

thickness t* and a leading edge 'ellipse' whose dimensions are also O(t*)

(see fig. 1). The upstream flow is assumed to be nominally uniform, except for
a small O(e) steady perturbation, say eU u (z), in the streamwise velocity

that depends only on the spanwise coordinate Xz and has a characteristic

length scale X. u (z) is, of course, an order-one quantity. _e suppose that
all lengths have been normalized by X and that the velocity u = {u,v,w} has
been normalized by the uniform upstream mean flow velocity U . The flow is
assumed to be incompressible, with density p, and the pressure p is

normalized by pU_. The plate thickness t* is taken to be O(X), and the
x-coordinate is assumed to be in the streamwise direction with the origin at

the leading edge while the origin of the y-coordinate is at the flat surface of
the plate far downstream in the flow.

Finally, we require that the Reynolds number Rk = Uk/_, where . is the

kinematic viscosity, be large enough to insure that the viscous effects are
confined to a narrow boundary layer at the surface the plate that is predomi-
nantly two dimensional near the forward stagnation point. This will occur if

1 (2 1)
In Rx << _ << R2 ,

which we now assume to be the case.

2.1. The Linear Solution

The entire flow is then two dimensional in the vicinity of the leading

edge, i.e., in the region where x = 0(1), with the three-dimensional effects
being an O(e) perturbation of the two-dimensional base flow, say {Uo(x,y),

VO(x,y),O }. The viscous effects are confined to a narrow region whose thick-

is 0(_:1/2_. The solution outside this region should therefore expandness
like k /x /

= (Uo,Vo,O}+  {Uo,Vo,Wo} ,2{ul,vl,w 1} , - {uo ,vo,o}

÷ 2-_
+ ¢U0 ÷ e u I + (2.2)

and

2 (2.3)
P = Po + ePo + e Pl +



The complex conjugate mean flow velocity _ = Un - _Vn is an analytic
function of Z - x ÷ i[y ÷ (t*/k)] that can be expressed iM terms of a complex
potential, say

= _ + i_ , (2.4)

where _ is the velocity potential and f is the stream function, in the
usual way by

d_
= _ (2.5)

For definiteness, we suppose that _ = 0 on the surface of the (body)
plate and along the stagnation streamline and that _ • 0 at the forward stag-
nation point.

The first order perturbations are governed by the linearized Euler equa-
tions and the results obtained by Goldstein (1978) (also see Goldstein, 1979)
can easily he specialized to the present case to show that the relevant solu-
tion can be written as

u0 --v, + u(z)V a(x,y), (2.6)

Po * - Uo Yx + Vo 4, ,

where

V2_ = -u (z)V 2 a , (2.8)

Io2(_,_) • v0(_,,)
--00

is t_e Lighthill (1956) - Darwin (1954) drift function and the normal component

of u 0 must vanish at the surface of the plate.

2.2. Breakdown of the Linear Solution

The expansion (2.1) is nonuniform in the vicinity of the plate. In fact,
it is easy to show from these equations, along with the results of Appendix A,
that the cross flow velocity w0 becomes infinite there like

u_,(z)
In ,I' as _' • 0 (2.10)Wo • a

where a is a constant related to the local potential flow behavior in the

vicinity of the forward stagnation point and the prime denotes differentiation
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with respect to z (also see Lighthill, 1956J. The remaining velocity compo-
nents, as well as the pressure, remain finite. The strongest nonuniformity
occurs in the stagnation point region where the mean flow goes to zero. In
fact, it is easily shown from the results of Appendix A that cpo becomes of
the same order as PO at an O(e 1/2) distance from this point. However, the
linearized equations still give the correct solution (to the order of interest
here) right up to the edge of the viscous boundary layer and this nonuniformity
need not be considered further.

However, another, much more important, nonuniformity develops far down-
stream in the flow where x becomes large. To understand its structure we
note that

* y, U0 * 1, ,b-, x, a -_ ,_+(y) + x as x -* _ ,

where

¢o

+ V0
--00

1 lny
de ÷ ao(y) - as y ÷ 0 (2.12)

and aO remains bounded.

It is now convenient to introduce the new dependent variable

¢ + u®(z)%(y) (2.13)

Equations (2.6) and (2.8) then show that

V2_~ = u''A ,
+

(2.14}

and the normal component of u 0 will vanish at the plate if

a_-_-y_ 0 at y=O

It now follows from (2.12), (2.13), and (2.15) that
x and, consequently, that (see (2.7))

(u"* ' ay' _z- +] '

Po*O ,

and

(2.15)

becomes independent of

(2.16)

(2.17)

6



U'' 2

Y-- In y as y -_ 0 (2.18)• _(z) - a 2

Substituting (2.1) and (2.2) into Euler's equations and using the second member
of (2.11) along with (2.14) shows that

as x ÷ _ (2.19)

It therefore follows from (2.12) and (2.18) that

,2
U

8
8---x(ut + Pt ) ÷ - --a In y , (2.20)

8v 1

8x

8pl (u_, '2 - u_u_' ')

+gy *- 2
a

y ln2y , (2.21)

8wI 8pl u'u' '
0o in2y

O--x + 8-z-'* 2
a

as x ÷ _ and y * 0 (2.22)

Then since u 1 satisfies the continuity equation

7 • Ul=O , (2.23)

it follows from these results that

(u' ' 12 as y * 0 and x * (2.24)

and, consequently, that

2

(u:yPl ÷ d(z) - a as y¢ 0 and x-_ _ [2.25)

It now follows from (2.1), (2.2), (2.10), (2.11), and (2.20) to (2.22) that

u* I + cu (z) -

2 2
C XU'

In y (2.26)



cu_ c2xu_u_ '

w-_--In ya 2
a

In2y

"cu '' )2

as X+_, y+O,

It is clear that this linear expansion must break down when

-cx In y = 0(1)

and that a new solution must then be found for this region.

(2.27)

(2.28)

(2.29)

3. BLENDING LAYER SOLUTION

To obtain this solution we anticipate that viscous effect will still be
unimportant and introduce the new gauge functions

1 (3._)

to be specified more precisely below, along with the new scaled variables

(3.2)

. Iny
n = -c In y = In (3.3)

The necessity of using logarithmic variables in problems of this type was
pointed out by Lagerstrom and Casten (1972) and by Bush (1971) (see also

Agvawal and Messiter, 1984).

We simplify the algebra by using the new independent variables

- xrl (3.4)

and n in place of _ and n. Then the Euler and continuity equation becomes

a * a oen/Ofa + _a

(3.5)

and

c n _ oenlc _n 8-zaW
(3.6)
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Equations (2.26) to (2.28) suggest that the solution in this region will be of
the form

u = 1 + e_o(_,z) , (3.7)

e e-n/anTJov = - (_,z) , (3.8)

w = -nw_,_,z;
_ U'" "

(3.9)

and

P = e2d(z) ÷ 2 e_q/° 2

where uo, _0, _0, and PO are, of course, assumed to remain 0(1) in the
'blending layer' limit c ÷ 0 with _,n,z held fixed.

Substituting these into (3.5) and (3.6) and retaining only lowest order
terms, we obtain

o_o o_o
a_ + _o _z = o (3.1t)

8_0 -2 8_0
8_ + Vo + WO 8z - -Po ' (3.12)

a_o o_o
a_ + Wo Oz - o , (3.13)

and

a_ o
Vo + _ = 0 , (3.14)

respectively. Equation (3.13) can be solved for wO, the result can then be
used in (3.!4) to determine v O, which can, in turn, be used in (3.12) to
determine PO. Equation (3.11) can, of course, be solved for u O.

It is well known that the general solution to the 'water wave type' equa-
tion (3.13) can be written implicitly as

_o " F(z-_o _) , (3.15)

where F is an, as yet, undetermined (arbitrary) function of the indicated
argument. This solution must match onto the linear solution (2.27) in the
limit as n ÷ 0 with x fixed and the limit x ÷ 0 with n fixed - both of

which correspond to the limit _ * O.



Expanding (3.15} for small _, we obtain

Wo = F(z) - F'{z}F(z)nx +

It therefore follows from {3.2} and (3.3) that (3.9} becomes identical to
(3.27) when, as yet, the undetermined function F is taken to be

Equation (3.3} shows that

u:,(_)
F(z} - - a

n * 1 in the 'small' sublayer

of the much thicker region n = 0(1).

_0 _ F(z-T& o)

- _ = o(1)

Equation (3.15) then becomes

for _ = 0(I)

(3.16)

(3.17)

(3.18)

(3.19)

4. REMOVAL OF SINGULARITIES

It is well known that the 'water wave' solution (3.15) does not remain

valid for all _ > O. In fact, differentiating (3.15), with respect to z,
shows that

a_o F'
az 1 + _F' (4 1)

which becomes singular at _ = -1/F'. Here, the prime denotes differentiation
with respect to the entire argument and we can suppose without loss of gener-
ality that the initial singularity occurs on the z = O plane. This singular-

ity occurs at the downstream location, say _s, given by

_s =-Min. g(_) , (4.2}

where

{_(_) =- - F'(_} (4.3)

which means that g' should equal zero there (see fig. 2).

Then, holding _ constant, expanding z in a Taylor series about the
singular point, and using (4.1) yields

s s

(4.4)

10



where Ws is the l_miting value of WO at this point. Then since

d2z dz 8 dz _ _ * 0

dw_ - d_ 0 8z d_ 0

(4.5)

this, together with (3.14), shows that

1 -2/3
v0 -, _ _ _sz (4.6)

and

1/3
_0 * _s + BsZ (4.7)

as z ÷ 0 with _ = _s, where ks is, of course, an order-one constant.

On the other hand, (3.13), (3.14), and (4.1) show that

(4.8)

and

z (4.9)_0 ÷ _s - _ - _ '
S

as _ ÷ _s with z held constant.

We now construct an appropriate local solution that removes this singular-

ity, or at least delays its formation. The relevant scaling depends on whether
or not _s is equal to zero. For definiteness, we consider only the case,
corresponding to our numerical example, where Ws = O. The first significantly
different scaling occurs when

- _S
_ - 0(1) (4.10)

a

Then equations (4.7) and (4.9), or equivalently (4.6) and (4.8), show that the

appropriate 'z-scaling' is

z - 0(1) (4 11)K 3/2 '

and in order to match with (4.7) to (4.9), via (3.7) to (3.10), the dependent
variables must scale like

u = 1 + 0(_) (4.12)

11



c -n/a -
v = _ e nv[(_,n,_) (4.13)

o

w- 1/2 qwI(_'q'z) (4.14)
a

and

1 (c__.q_.e- n/a'_2
P = c2d(z) + 2 \ 2 J PI (_'n'z)

(4.15)

where vI, wI, and Pl remain of order one in the limit as e ÷ 0 with _, n,
and _ held fixed. Substituting into (3.5) and (3.6) and retaining only the
lowest order terms now yields

_s ) a_¢l 8_I _s aPII --- _l + _ + _I -- = -Pl +
n a_ a_. 2n a_

_s ) O_I OwI1 - -- Vl _ + Wl _ = 0 ,
n a_ a_

(4.16)

(4.17)

and

_s 8_l awl
Vl + - 0 ,

n a_ a_
(4.18)

which clearly generalizes (3.12) to (3.14). The new terms are, in the main,
due to singularity line curvature effects.

Equations (4.17) and (4.18) can now be solved for _I and wI and the
results used in (4.16) to determine PI Equation (4.18) will automatically

be satisfied if we introduce the generalized stream function _ by

and

wI = _ _s aT (4.19)
n a( '

_)j_{
vI = - (4.20)
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Substituting these into (4.17) shows that _ is determined by

and in order to match with (4.6) to (4.9) we must require that

1 -1/3
* - _ BsZ as z * ±= with _ fixed, (4.22)

and

÷ _ as _ ÷ -= with 7. fixed, (4.23)

which clearly represent appropriate asymptotic solutions to (4.21).

5. THE BOUNDARY LAYER EXPANSION

Viscous effects must obviously come into play when y becomes suffi-
ciently small. The boundary layer will initially be two dimensional with the
cross flow effects producing only a linear perturbation (as in Toomre, 1960)

until its thickness becomes of the order of the length scale k8 introduced
in the previous section. We therefore suppose that y = 0(1), introduce the
long streamwise length scale

L* = X (5 1)-_ In8

and set

_

xs - -- , (5.2)

where

UL"
OD

R =- (5.3)
3)

is the 'global' Reynolds number based on L*. It follows that

s =. 1 , (5.4)

(Rkc In _) 1/2

which, in view of (2.1), is consistent with our assumption (3.1) that 8 << 1.
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We first consider the region where 0(_ - Is) is greater than 0(o).

5.1. The Early Three-Dimensional Region

In this part of the flow we expect the streamwise velocity

u = u(_,_,z)

to be 0(I) and in order to satisfy continuity we put

v = -¢ 8(In 8)V

w = -¢(In 8)W ,

where V and W are, of course, assumed to remain 0(I) as
tions (3.3), (3.10), and (3.18) suggest that

p = _2d(z) + O(c 8 In 8)2

in this region.

C ÷ O.

Substituting these scalings into the Navier-Stokes equations yields the
three-dimensional zero pressure gradient boundary layer equations

8U 82U
u at}+ v at}+ w_ =

8x ay 8_ 2

(5.5)

(5.6)

(5.7)

Equa-

(5.8)

and

(5.9)

U aW + v OW + W OW O2W (5.10)
O_ O_" 8z - 0_2

aW
at} + a_ + _ .. o . (5.11)
a_ ay

U must clearly go to unity as y ÷ ® in order to match with (3.7). The
boundary condition for W is a bit more subtle. The known properties of the
boundary layer solutions suggest that the cross stream derivatives should
become small as y ÷ _. Equation (5.10) therefore becomes

OW
a_+w_=o ,
a{

(5.12)

whose solution is given by

w = C(z - _w) (5.13)

This will clearly agree with (3.19) and (5.7) will therefore match with
(3.9) if we take

14



G = F , (5.14j

where F is given by (3.17). It is worth noting that the continuity equa-
tion (5.11) automatically insures that (5.6) will match with (3.8) and (3.14).

The appropriate boundary conditions for (5.9) to (5.11) are therefore

U ÷ 1, W * F(z - xW) as _ ÷ _ (5.15)

U = Y = W = 0 at y = 0 , (5.16)

and since the cross flow effects become small as _ ÷ O, O must go to the
Blasius solution in this limit, i.e.,

U ÷ UB(_,9) as x ÷ 0 (5.17)

The solution to this problem should, of course, become singular at the inviscid

singular point _s.

5.2. Terminal Form of Early Three-Dimensional Solution

It is first necessary to find the terminal asymptotic form of the solu-
tion to the initial boundary layer problems (5.9} to (5.11} in order to extend
the boundary layer solution through the singularity. For simplicity, we again
consider only the case, corresponding to our numerical example, where the cross
flow velocity vanishes at the singularity.

We expect the solution to be of similarity form in the vicinity of the

singular point _s and the numerical results suggest that it develops a double
layer structure with a thick, predominantly inviscid, outer region and a some-
what thinner viscous dominated sublayer. We therefore begin with the outer

region, put

(5.18)

and

Z

Z = 3/2 ' (5.19)

with y > 0 and seek a solution of the form

U = f(y,z) , (5.20)

N

'

(5.21)
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and

W (_s .1/2 (5.22)

It follows from (5.9) to (5.11} that

1 fh + (g - yyf) Oh ÷ h + _ -- = 0 , (5.23)
2 ay az

( 3 zf) af(g_ y_f) af + h 4-_
ay a_

= 0 , (5.24)

3 ; af ah
-yya-f-f÷ @-g÷_ --÷--=0

ay a_ az a;
(5.25)

The choice of y will, in general, depend on the particular problem, but for

the case, corresponding to our numerical example, whflre the singularity lies on
a symmetry plane, h will behave like hn(y)z and z-derivatives of~ f and g
will vanish on this plane. It follows f_om (5.24) that either af/Sy must
vanish or

g = y._f (5.26)

Our numerical results suggest the latter, and (5.25) therefore implies that

ho+Yf=O , (5.27)

which will only be compatible with (5.23) if

"_ = 1 j (5.28)

which, in turn, shows that

h 0 = -f on z = 0 (5.29)

Equations (4.8) and (4.9) and the inviscid boundary conditions at the plate
require that

f÷l , (5.30)

N

h * k(z) , (5.31)

g • (5.32)

~

as y -* _ and

16



_2 _ _*
g ~ y f ~ y as y ÷ 0 (5.33)

To find the viscous wall layer solution we put

and seek a similarity solution of the form

1+2a ~ ~

: Hw(7,_)

It therefore follows from (5.9) to (5.11) and (5.19) to (5.21) that

8Fw ( 3 zFw) 8Fw 82Fw-(I + 2o_)F2w + (Gw - aYF'w) _ + Hw + _ -- = --
av a_ a_2

-(2a + 3)FwH w 8Hw 3 ZFw_) 8Hw+ (Gw- o_Fw)_ + (Hw ÷
8Y O_

82H
W

and

OF 8Gw 3 z 8Fw 8Hw
-(1 + 2ot)F w - o_Y _ + _ + _ - +

a7 aY az a;
=0

Matching with (5.20) to (5.22) and (5.33) requires that

F ~_/, G ~72 ,
W W

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

as * ®, and

= 0

The viscous wall conditions require that

F = G = H = 0 at
W W W

_/=0

(5.42)

(5.43)
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It is worth noting that (5.38) to (5.40) have the exact symmetry plane
solution

aH
w ~~ ;_2 -

F = -_-- aY ; G _-,_. for z = 0 ,
w az w

where a is a constant and that the wall shear must behave like

= _(z)(_ s - _)
=0

as x * _s (5.44)

for all values of z.

5.3. The Inviscid Inner Solution

Close to the singularity, where _ - _s = O(a), the boundary layer solu-
tion must match onto the inner solutions (4.12) to (4.15) (rather than onto

(3.19)) and onto the terminal forms {5.20) to (5.22} and/or (5.35) to (5.37) of
the boundary layer solutions (5.5) to {5.7). Our preliminary investigation of

the equations revealed that singularity line curvature continues to play an

important role even in this relatively thin region. We therefore anticipate

that the relevant solution will have a double layer structure and that in the

upper layer will be of the form

u = u_(_, _i' _) ' (5.45)

¢8

I Vi(_ YI _) (5.46)V - 2 ' ' '

and

where

w _ _ WI(_, YI' [_} ' (5.47)

p -- e2d{z} + O(cSi) 2 ,

YI _ _ (5.48}

and, in order to match with (5.20) to (5.22) we must take

8
8I = --a {5.49)
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Substituting these into the Euler equations (viscous effects are, of
course, negligible on the short streamwise length scale (4.4)) we obtain

3UI (_s) aUI--+V --8 WI 0- -a.U + _ ,
UI a_ I 3_,i YI a_ I a_

(5.50)

awl (_s) aw_+ V _a _ _a W + Wl _ = 0 '
UI a_ I 3_ I Yl a_ [ az

(5.51)

and

8UI (a _s )
__ _ 9_ V

+ t Yl i
aw I

+ - o (5.52)

UI must clearly go to unity in order to match with (4.12). Matching with
(4.13) and (4.14) can also be enforced if, as we might anticipate from the

properties of the thin layer equations, WI becomes independent of YI as

Y[ * _. Then VI will behave like YiVl,O(_,_) where VI, 0 and WI then
satisfy

8WI aWI
_ -- + WI -0 (5.53)

and

3V 8Wl
VI,o - _s _ + - 0

a_ o_
(5.54)

as YI ÷ ®, which is clearly compatible with (4.17) and (4.18). The inviscid
wall condition, of course, requires that

VI = 0 at YI = 0 , (5.55)

and we anticipate that U I and WI will also go to zero there.

Matching with the upstream solutions (5.20) to (5.22) requires that

UI '" f -_'Y[' (__ 3/2 '
(5.56)

Wi ÷ (__)1/2 -_YI' (__ 3/2 '
(5.57}

etc., as _ ÷ -®.
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5.4. The Viscous Wall Layer

The expansions (5.45) to (5.47) does not, of course, remain valid in the

region near the wall where Yl * O. However, the scalings (4.10) and (4.11)
should still hold and the upstream solutions (5.35) to (5.37) suggest that u
and w will be O(a) and 0(ol/2c) there. The viscous terms will then be of
the same order as the convection terms when y = 0(1) and it follows from the

requirements of continuity that the wall layer solution should scale like

u = oUI(_,_,_) , (5.58)

v =o--Vlt_,y,_j'_"• I (5.59)

e°1/2
w = Wi(_,y,z) , (5.60)

Then the Navier-gtokes equations show that the order-one quantities
are determined by

[, ( - {UI,WI} = 0
Y

g[, Vl, W[

(5.61)

subject to the viscous wall conditions

= 0 , (5.62)

UI = Vl = W[ = 0 at = 0 , (5.63)

and matching with (5.45) to (5.47) requires that UI and WI behave like

Wl,U I ~ _ as _ * ®

Matching with the upstream solutions (5.35) to (5.37) requires that,

(__ 3/ '

(5.64)

(5.65)
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)3/2Hw( _) ) (5 66)Wl "_ (-_ Y' 312 '

etc., as _ ÷ -_.

Figure 3 summarizes the overall asymptotic structure of the problem devel-

oped in this and the preceding sections.

6. NUMERICAL SOLUTION OF THE BOUNDARY LAYER PROBLEM

The three-dimensional boundary layer problems (5.9) to (5.11) with (5.15)

to (5.17) was solved numerically using the Keller box method (Keller and
Cebeci, 1972, Cebeci and Smith, 1974, and Cebeci, Khattab, and Stewartson,
1981).

To formulate the numerical problem we first introduce the Blasius variable

= y/W_x and write the boundary layer equations as a system of first-order

differential equations

(6.1)

U' = p, W' = q (6.2)

e' = _ + x U-- + W
ax

(6.3)

where ' S 8/8n.

The boundary conditions are given by equations (5.15) to (5.17) and

- o,z) = o (6.4)

Note that the definition of e here differs from that used by Cebeci et al.

(1981) to avoid an apparent singularity in (6.3) as x ÷ O.

A Fourier spectral decomposition (truncated to a finite number of terms)

is now introduced in the spanwise direction as

N

U(x,n,z) = _ Un(X,n)e inz

n=-N

(6.5)

and similarly for the other variables where

the complex conjugate.
U_n = u_, etc. with * indicating
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The differential equations for the Fourier components then become

aUn_m +
Pn ÷ Pmen-m x Um ax

n=-N Ln=-N n=-N

i(n - m)WmUn_m (6.6)

N OWn_m

' =qn + qmen-m x Um +

n=-N ax n=-N
n=-N

i(n - m)*mWn_m],
(6.7)

U _ )
_qn Pn' Wn n (6.8)

u aun )
e' - n

n 2--+ -- +inw
\a_ n '

(6.9)

for -N < n < N.

The standard Keller box scheme is then applied to the equations for the
Fourier components in the same way as described by Cebeci et al. (1981) to
advance the solution downstream from an upstream station where the solution is
known. To begin the calculation starting conditions are derived by expanding
the boundary layer solution about the Blasius solution as x * O. These
expansions yield

1
U - f' + _ n'f"F(z)x (6.10)

and

V ~ - 1 (-_ _ qf,) + 4 (_2_,, _ _ _ 3nf,)F,(z)V _ (6.11)

W ~ f'F(z) (6.12)

where f = f(_) is the Blasius function. The starting conditions for p, q,

and e follow from these and (6.2) and (6.3).

A nonuniform mesh is used in the cross stream coordinate such that the J
mesh points are distributed according to

~ - K i - 1
no = O; nj = h I K - 1 , j = t,l (6.13)
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This has the effect of increasing the local mesh size from its smallest value

near the wall, h 1, by a fixed percentage (prescribed by the constant K) for
each subsequent box.

The introduction of the finite difference approximations yields a

5(2N ÷ 1) by 5(2N ÷ 1) nonlinear system of equations for the unknown Fourier
coefficients at each cross stream grid point. The nonlinear system is linear-
ized about "a previous iteration (or initial guess) by Newton's method. The
difference between two iterations is solved for in an efficient way by the

block tridiagonal procedure until convergence is achieved. Products are eval-

uated in physical space and then transformed back to Fourier space using a
standard Fast Fourier Transform algorithm.

An advantage to using the Fourier spectral decomposition rather than a
marching procedure in the spanwise direction is that the need to modify the
procedure when the cross flow velocity component changes sign (as will happen
in the cases of interest here) is avoided. The spectral method maximizes com-
munication in the cross flow variable which then takes on an elliptic nature

as suggested by I)_er (1981).

7. RESULTS AND DISCUSSION

Since vorticity is carried by the fluid particles in an inviscid flow,
vortex lines that are perpendicular to the plate at upstream infinity become
infinitely elongated as they pass over the plate-leading to infinite velocities
and infinitesimal length scales that can only be eliminated by viscous effects.
This vortex stretching produces the logarithmic singularity in the initial lin-
ear inviscid solution which, incidentally, is well known in classical rapid

distortion theory literature (Hunt and Carruthers, 1990). The nonlinear singu-
larity is new but is also related to this vortex stretching mechanism. It is
therefore not surprising that its formation is associated with the development
of small spanwise length scales.

The solution to the three-dimensional boundary layer problem (5.9) to

(5.11) and (5.15) to (5.17) depends only on the single function

u (z) (7.1)
V(z) a '

which characterizes the scaled upstream disturbance field with the constant a
being determined by the local potential flow in the vicinity of the forward
stagnation point. It can easily be scaled out of the problem by replacing c

by a¢ in (5.1), (5.4), (5.6), and (5.7).

Our interest is primarily in periodic-type disturbance fields, and for
definiteness we choose

U = COS z (7.2)

The initial singularity will then lie at
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{s = 1 (7.3)

The choice (7.2) has special symmetry properties which may tend to make our
results less than universal. In particular, it forces the singularity to lie
on a symmetry plane of the flow which may simplify the terminal asymptotic
structure of the boundary layer solution. However, these issues are beyond the

scope of the present work and will be deferred to a subsequent paper.

The characteristic streamwise length scale L* of the boundary layer flow

is given by

L* = - 2X , (7.4)

ac In V_ca

when this quantity is renormalized to absorb a into the scaling. The bound-
ary layer singularity therefore develops on this scale which means that it
occurs further downstream (relative to the characteristic length scale X of
the disturbance) as the characteristic amplitude _ of the upstream disturb-
ance and the leading edge/disturbance scale Reynolds number Rx decrease. Rx
must, of course, always remain large in order for our analysis to be valid.

The effect of the leading edge geometry is accounted for by the factor a.

The upstream boundary layer flow is predominantly two dimensional and
there is an overlap region (in which x << 1 and x >> O) where it is given by
the Blasius solution. This solution is therefore the appropriate upstream
boundary condition for the x-scale boundary layer problem under discussion.
The computed streamwise velocity profiles are shown in figure 4. They clearly
show the order-one change in the mean profile shape produced by the small
cross flow velocity in the external stream. Benney (1984) was among the first
to show that asymptotically small modulations occurring on sufficiently short

length scales can lead to order-one changes in the mean flow. However,
Benney's modulations arose from interacting Tollmein-gchlichting waves and are
fundamentally different from the steady upstream distortion effects being con-
sidered herein.

The velocity profiles of figure 4 also point to the anticipated localized
thickening of the boundary layer in the vicinity of the symmetry plane as

* 1 and to the associated reduction in spanwise length scale. Figure 5 is a
plot of the upwash velocity profiles. The dramatic local increase in this vel-
ocity component might be described as a kind of 'bursting phenomena' which, up
to now, has only been found in unsteady flows. This might lead to a local
transition of the boundary layer and therefore provide a possible mechanism for
by-pass transition. The answer to this question depends on the stability of
the solution to the local rescaled boundary layer problems (5.41) to (5.48) and

(5.54) to (5.59). The final resolution of this issue is therefore beyond the
scope of the present work and will be pursued in a forthcoming paper.

The cross flow velocity vectors are plotted in figure 6. They show that

the large upwash velocity is produced by a spanwise flow into the symmetry
plane.
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The boundary layer solution develops a double layer structure and the ter-
minal form of this solution is given by (5.20) to (5.25) in the upper inviscid

region whose thickness increases like

1 as * 1 , (7.5)
1 -

and by (5_35) to (5.40) in the lower viscous region, whose thickness remains
0(1) as x* 1.

This solution becomes particularly simple on the symmetry plane where it

implies that

O = f(y,O) , (7.6)

dW f(y,O) (7.7)

dz - (1 - x) '

and

v (7.8)
(1 - '

where the function f is indeterminate and has to be found from the numerical
solution. The solution in the lower layer is still given by these formulas but

with f equal to its asymptotic form

NN

f = ay , (7.9)

where _ is a constant. In this sense the lower layer is no longer a distinct

asymptotic region but is part of the upper inviscid region to the order of
approximation of the analysis. This, of course, only holds on the symmetry

plane.

To obtain an accurate check on our terminal asymptotic solution we worked

out the numerical solution to the symmetry plane boundary layer equations

starting from the upstream Blasius solution. These equations can, of course,
be solved independently of the flow in the rest of the boundary layer and are
much simpler than the full three-dimensional equations. It turns out that

(7.7) and (7.8) constitute an exact solution to these full equations and still
satisfy the correct free-stream boundary condition, so that the numerical prob-

lem is especially simple in this case.

Figure 7(a) is a pIot of the symmetry plane streamwise velocity profiles
(at various values of x) as a function of the composite singularity coordinate

y(1 - _)/_x. It merely shows that the profiles go smoothly from their initial
Blasius to their final asymptotic forms. Part (b) of this figure shows that
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these _rofiles look quite different when plotted against the unscaled coordi-
nate y and again reflects the dramatic thickening of the boundary layer. The
predicted linear behavior at the wall is also evident from this figure. The
calculated wall shear stress is shown in figure 8. The asymptotic linear
behavior and the ultimate vanishing of the wall shear, predicted by (5.44), is
clearly verified by these results.

The vanishing of the wall shear at _ : 1 is indicative of the formation

of a singularity in the boundary layer solution at this point. But since this
singularity is directly related to the singularity in the outer inviscid solu-
tion, it is basically inviscid in nature and it is therefore not clear whether
or not it is removable. The answer to this question depends on whether the

local rescaled inviscid problems (4.12) to (4.18) and the corresponding local
rescaled viscous problems (5.41) to (5.48) and (5.54) to (5.59) possess self
consistent nonsingular solutions. This constitutes a very difficult numerical
task that is beyond the scope of the present work. The nonremovability of the
singularity would require that the upstream flow field predicted by our analy-
sis be modified due to some form of boundary layer separation that would have
to be accounted for in the initial formulation of the inviscid flow problem.
This separation could, of course, be eliminated by terminating the plate before
the singularity had a chance to form. But even if this is not done the strong
local instability of the oncoming boundary layer profiles could promote transi-

tion upstream of singularity and again modify the flow before the singularity
can occur. We therefore feel that it makes sense to investigate the stability
of the upstream boundary layer profiles irrespective of whether or not the sin-

gularity is removable in the asymptotic sense.

We consider only the destabilization of the classical Tollmein-
Schlichting waves, since these are likely to be the most unstable modes and it
is consistent with our asymptotic approach to use the classical high Reynolds
number asymptotic results given, for example, by Lin (1946) and Reid (1965,
pp. 281-282). It is appropriate to use the asymptotic formulas associated with
the lower branch of the neutral stability curve, since we are primarily inter-
ested in the initial development of the instability and it is not inconsistent
with our scaling to assume that the Tollmein-gchlichting wavelength is short
compared to k. Then the mean flow can be treated as locally two dimensional
for purposes of calculating the instability wave growth rates and since the
most unstable profiles lie along the symmetry plane we consider only this por-
tion of the flow.

The asymptotic instability wave growth rates depend only on the Reynolds
number

U L*

R =

where L* is given by (7.4), and the local wall shear and not on the detailed
profile shape. We therefore used the wall shear from our symmetry plane bound-
ary layer calculations in the classical Tollmein-Schlichting wave dispersion
relations to generate the neutral stability curve shown in figure 9. We also
show the neutral curve for the Blasius boundary layer instability waves at the
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samestreamwise location. Notice that the neutral stability curve moveswell

upstream of the Blasius curve.

Finally, we note that the present study bears some resemblance to the

receptivity analyses of Goldstein (1983, 1985) and Coldstein, Leib, and Cowley
(1987) in that is involves the internalization of free-stream disturbances with
an attendent streamwise amplification of the perturbed boundary layer flow, but
is differs from them in that it only involves changes in the mean flow and
does not depend on the growth of local instability waves to produce the final
effect.
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APPEND IX A

In this appendix we investigate the singular behavior of the drift
function in the vicinity of the forward stagnation point where the complex

potential W behaves like

a Z2
2 ' (A-_)

and a is a real constant that is determined by matching with the 'outer'

potential flow. It therefore follows from (2.5) that

and, consequently, that

= -aZ= - -_ , (A-2)

{_l 2 = 2a _/0 2 + _2

Hence

I dO{_l2_i o 11
= 2 2 2a ¢0 2 ,t,2UO + Yo +

_-_ 1 _/0 2 + 't'2

It follows that

A ~ - ! In _ as _ ÷ 0 when 0 > 0
a

(A-3)

(A-4)

(A-5)
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growth wall upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.
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